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ABSTRACT 

A one-layer, mid-latitudeJ beta-plane channel model of an incompressible homogeneous fluid is constructed to 
study the propagation of systematic errors on a nearly stationary synoptic scale wave. A time- and space-centered 
difference scheme is used to  evaluate the governing primitive equations. Data fields resulting from height field pertur- 
bations injected at various locations in the synoptic wave are compared to the unperturbed synoptic wave at 3-hr 
intervals for 5 model days. Results show that the low-frequency or quasi-geostrophic component of the error tends to 
move toward the core of maximum velocity in the basic state and that, after 5 days, these maximum height errors 
are in the core regardless of the location of the initial perturbation. 

1. INTRODUCTION 

Recent years have found atmospheric numerical models 
becoming more sophisticated. Multilayered models, ultra- 
high-speed computers, and improved direct observational 
networks have made accurate global numerical models a 
reality. One inherent limit to the accuracy of these models, 
however, is the availability of initializing information. 
Direct observational data are lacking from large areas of 
the globe-such as oceans, deserts, the polar regions, and 
the Tropics. 

Recent interest has centered on augmentation of 
existing direct data networks using satellite information. 
Johnson (1967) and Smith (1967) have proposed schemes 
to augment available wind and temperature data using 
satellite photographs and radiation measurements. While 
this improved data coverage is desirable, preparing these 
additional data for numerical model use presents some 
novel problems. 

Model initialization of single-source data has been in- 
vestigated by Rossby (1938), Houghton and Washington 
(1969), and others. This work will investigate one special 
problem associated with initialization of multiple-source 
data-that of systematic error propagation. Attention is 
directed primarily to the low-frequency (synoptic scale) 
motions, although the high-frequency gravity wave modes 
are also present. 

This study has a direct relationship to the problem of 
predictability. Previous studies by Lorenz (19694 and 
Smagorinsky (1969) have considered the effect of initial 
errors or deviations on a forecast in terms of statistical 
comparisons involving the entire integration domain. In  
this study, the comparison is in terms of actual difference 
maps which can demonstrate the variation in predictabil- 
ity that exists as a function of location. The analysis 
provides information on the horizontal propagation of 
information or energy in a simple atmosphere. Knowledge 
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of energy propagation in the atmosphere is fundamental 
to understanding the complicated interactions of atmos- 
pheric motions. In  numerical models, there is the addi- 
tional related problem of error propagation from any 
artificial boundaries. 

This study uses a simple one-layer model to perform 
numerous experiments using variations of one basic initial 
condition. One-layer modeling has the advantages of 
economy and simplicity. Shuman (1962), Houghton and 
Kasahara (1968), and many others have taken advantage 
of these features to study atmospheric problems as varied 
as synoptic scale motions and mountain flow. While one- 
layer models are unrealistic descriptions of certain condi- 
tions, such as deep convection and baroclinic development, 
one may assume that general conclusions can be made 
applicable to certain modes of multilayer models (and 
perhaps the real atmosphere). 

This study will describe a one-layer model and a series 
of seven experiments involving a typical synoptic scale 
wave. A synoptic scale wave with negligible east-west 
trace velocity is run in the model for 5 days. This wave is 
used as a standard for comparison with six additional 
experiments. These additional experiments are identical 
to the first except for a small initial height perturbation 
located in or near the core of maximum fluid velocity. 
Conclusions are then made as to the sensitivity of the basic 
flow to the injection of this small perturbation at six 
locations. 

Injecting height perturbations into a basic flow is 
intended to simulate the incorporation of asynoptic data 
into a synoptic data network. Here, asynoptic data such 
as satellite data are expected to exhibit some systematic 
deviation from conventional data over the entire initial 
data field. Section 2 describes the model characteristics 
and the basic equations. In section 3, the stability criteria. 
(both physical and numerical) are discussed. The initializa- 
tion procedures are given in section 4, and the numerical 
experiments are described in section 5 .  Finally, experi- 
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mental results and conclusions of the study are presented 
in section 6. 
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These equations can be rewritten in an alternate form to 
be used for finite differencing as 

9. MODEL CHARACTERISTICS 
AND BASIC EQUATIONS 

The model used for this study is a rnid-latitude channel 
model of an incompressible homogeneous fluid. The lower 
surface is rigid and flat, the upper surface is free. The 
northern and southern boundaries are rigid vertical walls 
where the north-south velocity, V, is constrained to vanish. 
The flow is made periodic in the east-west direction with a 
wavelength of 6720 km. The model has the same dimen- 
sions and equally spaced grid points in both horizontal 
directions. The Coriolis parameter is evaluated from a 
beta plane centered at 45’N. 

For reducing the speed of gravity wave propagation and 
to simulate motion in the troposphere rather than the entire 
atmosphere, an inert fluid of infinite depth is placed above 
the free surface. This effect, described by Houghton et al. 
(1966), is achieved in actuality by “reducing” gravity in 
this study from 9.8 t o  1.4 m/sz. 

The model is initialized by prescribing a stream function. 
The three dependent variables (height and east-west and 
north-south fluid velocity) are determined by using bal- 
ance and quasi-geostrophic divergence relationships, 
discussed further in section 4. Time integration using 
Grammeltvedt’s scheme F (1969), as formulated in this 
section, proceeds for 5 days. The model disturbance 
energy is calculated at each time step to check conservation 
of total energy, and the three dependent variables are 
made available at 3-hr intervals. 

Symbols used frequently in this work are 

Coriolis parameter , 
reduced acceleration of gravity, 
depth of the fluid, 
index parameter in the x direction, 
index parameter in the y direction, 
number of grid points in the x direction, 
number of grid points in the y direction, 
time, 
velocity components in the x and y directions, 
east-west and north-south Cartesian coordinates, 
fluid density (constant), 
velocity potential, and 
stream function. 

The basic Eulerian equations are 

~ + u - + v - - - j v + g  au au a;c=o, ah 
a t  ax a~ 

a t  ax a y  ay 
g+u av -+v av -+ f u+g ah -=o, 

and 

(6) 

The integration scheme used for this model is based on 
Grammeltvedt’s scheme F (1969). This scheme has the 
advantage of conserving total momemtum in the non- 
linear terms. With his notation, the scheme can be 
written as 

ah a (hu)  d(hV) X + T  + F = O .  

(7) 

If (Y and @ are general variables, the operators found in 
eq (7-9) can be defined as 

A=Ax, Ay, At, 

-2 1 
a==- [a($, +A) - a(x*--A)I, 2A 

1 
ZZz=+(x t +A) +&f - 4 1 ,  

and 

The finite-difference form of the governing equations all 
contain space- or time-centered approximations to the 
first derivative terms except a t  the northern and southern 
boundaries. Here, because centered space differences in 
the north-south direction are not possible, one-sided 
differences must be used. This noncentered space difference 
has a noticeable but very small effect on the available 
energy of the model. This was shown by tests using various 
channel shapes. 

The total energy of the model, E, can be expressed as the 
sum of kinetic and potential energy. Total energy, -” 

evaluated over the entire volume of the model can 
expressed as 

for the finite-difference model where 
(2) 

-- 
be 

and 

437-755 0 - 71 - 2 
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and subscripts refer to grid position, for example, By writing eq (11-13) in finite differences and assum- 
ing periodic solutions of the form U+u" exp(F) with 
similar expressions for V$j and hTj where U ,  j= u ( i A ~ , j A y ) .  

Total disturbance energy (DE) can be evaluated by 
subtracting the minimum possible potential energy from 
the total energy of the system: 

or in finite-difference form, 

where 

Disturbance energy is a more sensitive indicator of 
energy changes of the model than the total energy and 
will be used throughout this paper to  monitor the energy 
characterisiics of the model. 

3. STABILITY 

Stability, both computational and physical, is investi- 
gated for the model equations and basic flow. Conditions 
for computational stability may be established by taking 
the basic model equations in Eulerian form, nondimen- 
sionalizing and linearizing t o  form 

where the transformations made are 

and 
c= gH 
A r 

A A  A A 
where U, V, H ,  and G are basic characteristic magnitudes 
for, respectively, the horizontal velocity components, the 
depth, and the gravity wave propagation speed in the 
model. Equations (1 1-13), when expressed in a time-space 
centered finite-difference form, are identical to those 
resulting from the expansion and linearization of eq (7-9). 

and superscript n refers t*o the time step, space dependence 
can be eliminated. The resulting equations are 

Un+l= U " - I +  (e@+ +T) Un+ RVn+ 6@hn, 

Vn+l = Tm-l -Dun + (GG + fh') Vn + $TIPl 

(14) 

(1 5 )  

hn+l =hn-1 + 8GUn + 8TV" + (bG+ @T)h" (IS) 

where 

a=-- B sin e, 
T = - J Z  B sin CY, 

D= 2 j A  f , 
B=At/Ax, 
8=kAx, 

CY= ZAy, 

k is the east-west wave number, and 
I is the north-south wave number. 

Equations (14-16) can be incorporated into a matrix form 

(17) 

where A is the amplification matrix 

$G+QT D ' 6G 1 a 
-D OG+PT 6T 0 1 

86: 6T i?@+DT 0 a 
1 0 0 0 0 
0 1 0 0 0 

.o 0 1 0 0 

The eigenvalues, X, of this amplification matrix are khe 
roots of the characteristic equation 

[h(E-A)+1]3=PE2[1+X(L-X)] (18) 
where 

and 
L=$G+i?X 

E2=&(@+P)-Lj? 

There are two sets of unique roots to  this sixth degree 
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FIGURE 1.-Zonally averaged ff uid velocity distribution in the 
channel for the initial conditions; the abscissa is the distance from 
the northern boundary. 

and 

L& J F 4 .  
2 h= 

A necessary condition for stability is that the magnitude 
of all the eigenvalues be less than or equal to one. The 
conditions established by eq (20) are less restrictive than 
those of eq (19). There are two possible cases involving 
the radical in eq (19) : 

Case I in which (LfE)>,F2 that leads to Ih l> l  for 
all possible values of e and a. 

Case I1 in which (Lf E )  ,< li-4 that results in 1x1 51 
for all possible values of e and a. 

Case I1 is of interest since case I will always give 
unstable conditions, while case I1 will produce, at 
wonst, neutral stability. Expanding the terms in case 11, 
one can write 

c 

For this model, 

A 
Since ( fAx/02 << 2, one can use a binomial expansion 
to approximate the square root term to form a general 
stability criterion for a two-dimensional linearized form 
of the integration scheme used: 

where V is a general velocity vector (magnitude 

&'+t2 ) with components U and V assumed equal. 
A A 
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FIQURE 2.-Values of absolute vorticity, q, in the channel for the 
zonally averaged initial fluid velocity; the abscissa is the distance 
from the northern boundary. 

Equation (21) agrees with the results of Richtmyer 
(1963) for the Lax-Wendroff scheme (1960) in two-space 
variables. For the parameters of this model, the term 

(1/4)(fAz/Q2 is much less than one and can safely be 
ignored. 

Although computational stability may be assured by a 
careful choice of At, barotropic instability in the basic 
flow (as described in sec. 4) is also a possibility. The 
east-west zonal average of the U velocity, n, for this 
flow is shown in figure 1. 

For a nondivergent one-layer model, a necessary 
condition for barotropic stability is d$a?J=O (Pedlosky 
1964) where 

A 

is the absolute vorticity defined as 

Figure 2 shows the values of for all values of y in the 
channel. Notice that q increases monotonically in the 
northward direction except for two locations where 
d&+O. Also note that i>O which implies inertial stability. 

Wiin-Nielsen (1961) notes that, for westerly flow, 
stability is enhanced in the divergent model as compared 
to the nondivergent model for the same flow. Since the 
U field is at worst just marginally unstable according 
to the nondivergent criteria, for the divergent model the 
flow is most likely barotropically stable. Thus it is expect- 
ed that a synoptic wave will remain a steady amplitude 
(or damped) Rossby wave in the absence of energy losses 
to  unbalanced motions. 

- 

4. INITIALIZATION 

For the experimental runs, the model is initialized by 
first prescribing the stream function, $, using the 
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relationshb 

where 

is the stream function amplitude factor; 
yo, the half width of the channel; 
b,  the north-south amplitude of the streamline 

d, a parameter that determines the width of the jet; 
through the jet axis; 

and 

L, the basic east-west wavelength. 
Values used were 

(ko = 1.44 X 1Q7m2/s, 
'yo= 15AS, d = 2AS, 

b =  AS, and As=240,000 m 

E=28As, 

which give a maximum fluid velocity of approximately 
30 m/s in the center of the channel. 

Since 9 must be a constant along the north-south 
boundaries, eq (22) is applied to within three grid points 
of these boundaries. The zonal average of the stream 
function at this point is then prescribed along each 
boundary. A linear gradient of stream function in the y 
direction is then prescribed for the remaining two points 
adjacent to the boundary. 

Initial values of height, h, are calculated from the 
prescribed stream function using the balance relationship 
to suppress unwanted gravity waves. The balance rela- 
tionship used is from Houghton et  al. (1966) and may be 
written 

where /3 is the constant beta parameter ai/%. The right- 
hand side of eq (23) can be evaluated at all interior points 
in the channel model. However, for solving this type of 
equation for h, boundary values or normal gradients of h 
must be specified. 

Average values of h on the northern boundary and 
southern boundary are prescribed so that the absolute 
value of the difference between the two boundaries is 
proportional to the total geostrophic mass flow in the 
channel and so that the mean depth is about 5000 m. 
Height variations along each boundary are computed 
according to the method of Stephens (1970) by the 
equation 

that, for this case, can be simplified to 

0 1 1 3 . 5 6 

x (io00 krn) 

FIGURE 3.--Balanced initial height field (hundreds of meters) for 
experiment A; the ordinate is the distance from the southern 
boundary. 

Figure 3 shows the resulting basic balanced height field 
used in this study. 

Divergence, D, may be calculated from, the prescribed 
stream function field using a quasi-geostrophic divergence 
relationship similar to that suggested by Phillips (1960) : 

Using the values of divergence obtained from eq (13) ,  
one may now calculate the velocity potential, X, from 
VX=D. 

The U and V velocities can finally be obtained from 
the stream function and the velocity potential by the 
relationships 

All the previous equations involving the Eaplacian 
operator, V2, are solved using sequential relaxation 
techniques. 

The time centered finite-difference equations require 
values of the variables V,  V,  and h at time t and t -A t .  
However, for the first step, only one set of values (those 
at time &,=O.O) is available. A forward step must be 
taken to produce values at to+At. The stability problems 
inherent in forward time stepping can be reduced if this 
first step is taken with reduced values of At. At time 
G=O.O, the initial forward step At' is set equal to At/& 
The next four centered time steps use successively doubled 
time steps until At'=At is reached. Equal time steps are 
then used until the run is terminated. 
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FIGURE 4.-Height field (hundreds of meters) after 5 model days 
for experiment A; note the short wavelength fluctuations and the 
decrease in longwave amplitude. 

5. NUMERICAL EXPERIMENTS 

Seven experiments were conducted using a generally 
balanced basic synoptic flow. The dependent variables 
U, V,  and h were determined initially from the prescribed 
stream function with the aid of the balance and quasi- 
geostrophic relationships as described in section 4. In  the 
first experiment labeled “A,” the height field shown in 
figure 3 was used for the initial condition. In the other 
experiments labeled “B” through “G,” this initial height 
field was perturbed slightly. 

The synoptic wave generated in experiment A (the un- 
perturbed flow) was used as a standard of comparison for 
each succeeding experiment. Figure 4 shows the final height 
field after 5 model days. We see that the synoptic wave 
has developed small-amplitude, small-scale oscillations 
especially near the northern and southern boundaries. 
Also evident is the decrease in amplitude of the synoptic 
wave. These two effects are compatible. While total energy 
has remained unchanged, some of the synoptic wave 
energy has been transferred to  small-scale fluctuations 
superimposed on the basic flow and some to the zonal flow. 
The small-scale fluctuations were very small initially, 
attesting to the suitability of the initializing procedures 
for the initially smooth and large-scale flow pattern in 
experiment A. 

The wave appears to have retrograded slightly-less 
than one grid point, however. When applied to  this flow 
at mid-channel, simple theoretical considerations give an 
eastward trace speed of -0.4 m/s, which after 5 days will 
produce a westward wave movement of two-thirds of a 
grid space. The basic synoptic scale wave is thus essentially 
stationary in theory and actuality for 5 days. 

x ( l o o o k m l  

FIGURE 5.-Initial height perturbation for experiment B in meters 
(solid lines) and region of initial maximum fluid velocity from 
experiment A (dashed lines); perturbation center points are also 
shown for experiments C, D, E, F, and G. 

For experiments B through G, a perturbation height 
field was superimposed on the basic height field of ex- 
periment A. This local perturbation was determined by 
sinusoidal functions with a maximum amplitude of 10 
percent of the basic height field at  its center and a half 
width of about 500 km which is less than 10 percent of the 
wavelength of the fundamental wave. Figure 5 shows the 
initial height deviation or perturbation contours for ex- 
periment B and the location of the perturbation center for 
the remaining experiments. Experiments B, C, and E had 
the perturbation embedded in the core of maximum fluid 
velocity. Experiments D and F had this perturbation lo- 
cated on the edge of the main flow. I n  experiment G, the 
perturbation was well outside the main fluid velocity core. 
Only the height field is perturbed. The velocity field is 
left undisturbed. Note, therefore, that the height, field is 
not balanced with the velocity field in the region of the 
perturbation. 

Experiments B through G were allowed to proceed for 5 
model days. At 3-hr intervals, the resulting height fields 
were compared to those of the standard, experiment A. 
All data are presented in height deviation form 

(ha) i. 3 = (Mi, 3 - (h-4) t ,  

where 
(heZ)(,  is the height value of experiment (B, C, D, 

(hA) f. ,, the height value of the standard, experi- 
E, F, or G) at grid point i, j ;  

ment A, a t  grid point i, j ;  
and 

(hd)(. j, the height deviation a t  grid point i, j .  
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FIGURE 6.-Perturbation height field in meters for experiment €3 
after 5 days; the underlined values are center point magnitudes; 
positive perturbation contours are solid lines; negative contours 
are dashed; a time filtering has been used to eliminate the high- 
frequency oscillations as described in the text. 
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FIGURE 7.-Same as figure 6, except this is for experiment C. 
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FIQURE 8.-Same as figure 6, except this is for experiment D. 
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FIQURE %-Same as figure 6, except this is for experiment E. 
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FIQURE lO.--Same as figure 6, except this is for experiment IF. 
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FIGURE 11.-Same as figure 6, except this is for experiment G. 
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FIGURE 12.-East-west location and center-point magnitude for the FIQURE 16.-Same as figure 12, except this is for experiment F. 
principal perturbation groups in experiment B. 
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FIQURE 13.-Same as figure 12, except this is for experiment C. 
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FIQURE 14.-Same as figure 12, except this is for experiment D. 

FIGURE 15.-Same as figure 12, except this is for experiment E. 
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FIQURE 17.-Same as figure 12, except this is for experiment G. 

High-frequency height fluctuations from initial im- 
balances in experiments B through G tend to obscure the 
longer term fluctuations. A low pass filter, applied to the 
height deviation fields at output stage, reduced these 
short-term fluctuations significantly. The filter, a weighted 
average type, was of the form 

(hd) ! , j=  0.25 ( h d )  f j" f 0.50 (h& 4- 0.25 (h&" 

where At was taken to be 3 hr. I t  must be emphasized 
that this low-pass filter was not allowed to interact with 
the model itself but was used to locate perturbations 
showing some degree of persistence. The resulting filtered 
height deviation fields (after 5 model days) are shown in 
figures 6-11 for experiments B through G .  

The more persistent blocks of perturbations (>50 m in 
magnitude) were tracked at  3-hr intervals as they moved 
through the basic flow. Time tracks for these selected 
perturbation blocks are summarized in figures 12-17. 
The maximum deviation is also plotted for these blocks 
as a function of time. An estimate of the location, average 
speed, and maximum magnitude of each block is summa- 
rized in table 1 where each perturbation block is identified 
by a letter-number combination. The letter refers to the 
experiment, and the number to the order of. appearance 
in the given experiment. The apparent origin of the block 
relative to the initial disturbance is determined by extrap- 
olation from the earliest tracked location backward 
in time to t=O. A dash indicates the lack of a meaningful 
numerical value. 
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TABLE 1.-Major perturbation disturbance blocks 

Time, to, when Apparent origin 
Perturbation Maximum height dis Eastward measured east 

block attained height placement first velocity ward from initial 
deviation exceeds 50 m @Is) perturbation 

(m) (hr) location 
(W 

0 
0 
0 
0 
0 
0 

B1 +479 0 - 
c 1  +489 0 
D1 $597 0 
E l  +489 0 
F1 +362 0 
0 1  +623 0 

- 
- 
- 
- 
- 

B2 -125 21 8 1320 
C2 -180 24 10 1320 
D2 -116 36 7 1440 
E2 -145 21 9 1320 
F2 -87 46 8 1440 
0 2  -6.5 Ill5 - - 

B3 +197 36 9 2640 
c 3  +232 36 8 2880 
D 3  +I85 63 6 
E3 +m 48 9 3120 
F3 +141 66 8 2880 
0 3  +110 105 

- 

- - 

- B4 -102 72 6 
E4 - 152 99 6 - 

30 60 PO 120 

T I M E  t h o u r r )  

FIGURE 18.-Filtered rms values for the height deviations (dashed 
lines) and maximum perturbation center-point magnitude (solid 
lines) a t  3-hr intervals for experiment C. 

The height deviation fields were analyzed by calculating 
the root mean square (rms) values (after Lorenz 196%) 
at 3-hr intervals for each experiment. When one uses the 
same notation as before, the rms value for experiments 
B through G at time t is  

The resulting time series of rms values were smoothed by 
a low-pass filter and are presented for experiment C in 
figure 18. For comparison with these rms values, the 
absolute value of the maximum height perturbation is 

1.0 , 1 

I 
17.0 60 90 30 

T I M E  (hours) 

FIGURE lg.-Smoothed and normalized rms values for the height 
deviations in experiments B through G. 

also shown in figure 18. The rms values were also normal- 
ized, filtered, and hand-smoothed for each experiment B 
through G. Figure 19 shows the resultant curves. 

Disturbance energy was calculated for each experiment 
a t  each time step. Although very small fluctuations of 
disturbance energy could be seen (perhaps due to boundary 
effects), the total disturbance energy did not fluctuate by 
more than 0.1 percent for any experiment. 

6. EXPERIMENTAL RESULTS AND CONCLUSIONS 

The height deviation fields (discussed in sec. 5) when 
viewed sequentially for each experiment have many 
similar features. Table 1 shows the location and duration 
of the principal perturbation blocks. 

During all experiments, the initial unbalanced height 
perturbation rapidly approaches balance with the fluid 
velocity field. During this process of about 6-hr duration, 
the center point magnitude decreases from about 500 to 
100 m. This time factor depends on the horizontal space 
scale of the initial perturbation which is the same in all 
experiments in this study. This initial perturbation re- 
mains quasi-stationary and exhibits only a slight tendency 
to move with the main fluid flow. After the initial ad- 
justment period, the center point magnitude slowly de- 
creases until, after about 60 hr, the initial block is no 
longer discernible except in experiment G. This is con- 
sistent with elementary adjustment theory which predicts 
that the height field adjusts to the velocity field for a 
perturbation with a horizontal length scale less than the 
radius of deformation (defined Clf) which is the case here. 

After 2 1 4 5  hr, a second negative perturbation block 
appears downstream from the initial disturbance. I n  ex- 
periment G, this occurs much later. While growing 
rapidly, this block moves eastward at  an average velocity 
of 8 m/s or about one-quarter of the maximum fluid 
velocity. This perturbation also begins to weaken after a 
time and even disappears after 5 days in three of the 

A 
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experiments. If the motion of each of these perturbations 
is extrapolated backward in time to t=O.O hr, this second 
perturbation originates a t  an apparent origin about 1300- 
1400 km east of the initial perturbation. 

The third perturbation in all experiments is a positive 
one and first appears at 36-66 hr except much later in 
experiment G. This perturbation grows rapidly to  f200 m 
or more and appears to have stopped growing when the 
model is terminated at 120 hr. This third block also moves 
eastward with a velocity of about 8 m/s. The apparent 
origin for the third block is generally from 2600-2700 km 
east of the initial perturbation for all experiments. 

A fourth negative block appears in experiments B and 
E but does not appear in the others. The fourth block has 
the same general characteristics as the preceding blocks. 

There are a few significant differences in the motion of 
all blocks for all experiments. There appear t o  be two types 
of response. Examining the initial appearance time, to, 
for the second and third blocks, one can contrast experi- 
ments B, C, and E with those of D, F, and G. There 
appears t o  be a 12-hr delay in the appearance of D2 as 
compared. to B2, C2, and E2. This delay is longer for 
block F2 and longest for block G2. Similar conclusions 
hold for the third blocks. 

A second differentiating characteristic is the maximum 
value of each perturbation. Again, the maximum values of 
B, C, and E are larger than D, F, and G for blocks 2 and 3. 
Block 1 is not considered since this information was 
specified initially. It appears from the above results that 
experiments B, C, and E have many similar characteristics, 
as do D, F, and G. It should be re-emphasized that 
perturbation blocks in experiments B, C, and E were 
located initially in the main fluid velocity core. The 
perturbation blocks in experiments D and F were only 
partially in this core while in G the initial perturbation 
block was entirely outside the core. The smoothed, 
normalized rms values for each experiment (fig 19) give 
additional support t o  this distinction. Again, rms values 
for B, C, and E are larger than D, F, and G after 45 hr. 

One can easily be misled by these rms values, however, 
as can be seen from figure 18. The rms plot for experiment 
C is increasing slowly in time. A better picture of this 
growth can be seen from the dashed curve (maximum 
center point magnitude). Here, it is obvious that the 
maximum perturbation value more than doubles during 
the final 110 model hours while the rms value only increases 
by 50 percent during this same time period. The other 
four perturbation experiments showed similar results. 
The rms curve is thus a very conservative measure of the 
increase in magnitude of these traveling disturbances. 
The second curve in figure 18-maximum perturbation 
value-perhaps would be a better estimate of this growth. 

The north-south motion of the perturbation blocks, 
while not analyzed in detail, shows uniform results. 
Traveling perturbation blocks tended to follow the north- 
south motion of the maximum fluid velocity core. In  the 
experiments with the initial perturbation field located to 

' 

one side of the fluid velocity core, the response indicated 
a gradual migration of this perturbation toward the jet 
core. The initial perturbation, quasi-stationary in nature, 
tended t o  be most persistant north of the synoptic trough 
and south of the ridge, especially in experiments D, F, 
and G. In  experiment G, the initial perturbation remains 
as a nearly isolated anticyclonic gyre for the entire 
forecast period. 

The traveling perturbations covered at least as much 
area in the horizontal plane as did the initial perturbation. 
The broadest (and most diffuse) perturbations developed 
in the initial perturbation in experiments D, F, and G 
after 20 model hours. 

Thus, one can see that these perturbations or systematic 
errors superimposed on a stationary wave can, over a 
period of 5 days, lead to large traveling disturbances. The 
closer these disturbances are to  the maximum fluid velocity 
core, the faster they grow. Perturbations injected into the 
flow, away from the main core, will also form traveling 
disturbances. However, in this case, they take an ap- 
preciably longer time to evolve. The most significant 
errors that develop away from the initial source region are 
always in or very near the jet stream axis. Care must be 
taken when initializing multiple-source data to a numerical 
model to reduce or at  least monitor the effects of these 
systematic errors as they travel downstream at about 50 
percent of the average fluid velocity. 

The initial error results in high-frequency gravity 
waves and low-frequency quasi-geostrophic motions. Re- 
sults of this study suggest that the latitudinal propagation 
of the low-frequency error fields is remarkably limited in 
the absence of fluid advection. This would be expected for 
Rossby wave motions of small scale in the absence of 
other wave motions. The interaction between the low- 
frequency error field and the large-scale motions is pri- 
marily limited to advection affects caused by the large- 
scale motions; however, other significant interactions are 
present. The high-frequency gravity wave motions have 
minimal interaction with the synoptic scale motions and 
can be properly sorted out by considering the time-aver- 
aged final computed solutions. 

As a suggestion for further research, it would be valu- 
able at this point to generalize these results t o  study the 
vertical propagation of these disturbances in a multilayer 
model. In  such a model, one would expect a more continu- 
ous spectrum of motions in frequency space especially 
associated with error perturbations; and the resultant 
interactions with the basic synoptic scale flow could be 
far more intricate. Also desirable is the development of 
techniques for matching the direct and indirect data from 
multiple sources to reduce these systematic disturbances. 
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